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Abstract
The declining pattern of population density from city centres to the outskirts has been widely
observed in American cities. Such a pattern reflects a trade-off between housing price/commuting
cost and employment. However, most previous studies in urban population density functions are
based on the Euclidean distance, and do not consider commuting cost in cities. This study pro-
vides an empirical evaluation of the classic population density functions in 382 metropolitan statis-
tical areas (MSA) in the USA using travel times to city centres as the independent variable. The
major findings of the study are: (1) the negative exponential function has the overall best fit for
population density in the MSAs; (2) the Gaussian and exponential functions tend to fit larger
MSAs, while the power function has better performance for small MSAs; (3) most of the MSAs
appear to show a decentralisation trend during 1990–2016, and larger MSAs tend to have a
higher rate of decentralisation. This study leverages crowdsourced geospatial data to provide
empirical evidence of the classic urban economic models. The findings will increase our under-
standing about urban morphology, population–job displacement and urban decentralisation. The
findings also provide baseline information to monitor and predict the changing trend of urban
population distribution that could be driven by future environmental and technological changes.
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Introduction

Urban population density is a fundamental
topic of continual interest in urban econom-
ics, geography and urban planning. Accurate
quantification of urban population density
can increase the understanding about the
spatial relation between population and
employment (Small and Song, 1994) and
provide support for modelling urban accessi-
bility (Guy, 1983), decentralisation (Garcia-
López and Muñiz, 2013; Griffith and Wong,
2007; Mills, 1970), urban sprawl (Qiang and
Lam, 2016) and land cover change (Jiao,
2015). This research stream dates back to the
pioneering work by Clark (1951), which uses
negative exponential function to describe the
declining trend of population density from
city centres. In urban economic theories, this
pattern is often interpreted as a sign that
employment is concentrated in urban centres
so residential areas near the centres are more
desirable because the cost of home–work
commuting is low (Mills, 1970; Muth, 1969).
The seminal work of Clark aroused broad
interests in mathematical modelling of urban
population density (e.g. Batty and Sik Kim,
1992; Chen, 2010; Griffith, 1981b; Muñiz
et al., 2003; Wang and Zhou, 1999). Early

competitors of Clark’s exponential model
include the inverse square function, which
was conceptualised from the gravity model
in social physics (Stewart and Warntz, 1958).
Batty and Sik Kim (1992) argued that the
inverse power function is more theoretically
solid for urban population density given the
fractal characteristics of urban morphology.
Additionally, Newling (1969) suggested to
add a quadratic component to the negative
exponential function to describe the U shape
of the population crater near a city centre.
Analogously, Guy (1983) and Ingram (1971)
proposed to use the Gaussian function (also
a quadratic exponential function) to model
accessibility of population to shopping cen-
tres. Song (1996) demonstrated that the
Gaussian function outperformed the expo-
nential and power function in modelling
population density in the Reno-Sparks met-
ropolitan area. A comprehensive review of
studies about population density function
can be found in Martori et al. (2002).

In addition to the monocentric functions,
conceptual and empirical studies were con-
ducted to model polycentric cities in new
urban economics frameworks. Noticeable
work in this direction includes the model
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proposed by Griffith (1981a, 1981b), which
incorporates trend surface analysis to char-
acterise population density gradients in poly-
centric urban systems where satellite city
centres emerge in peripheral areas. Other
model specifications incorporate a spatial
autoregression model to address the issue of
spatial autocorrelation (Anselin and Can,
1986), which can be considered a local form
of polycentricity. Later, Griffith and Wong
(2007) refined their model by taking into
account spatial autocorrelation and using
Minkowskian distance to describe the elasti-
city of space. Muñiz et al. (2003) argued that
a cubic spline function can provide a more
realistic portrayal of the urban population
pattern in polycentric cities. Other work
modelling urban population density in the
polycentric framework includes (Chen, 1997;
Feng et al., 2009; Gordon et al., 1986; Muñiz
et al., 2008).

Despite the fact that the declining pattern
of population density from city centres (or
sub-centres) is often interpreted as the trade-
off between commuting cost and housing
price, most of the previous studies are based
on the Euclidean distance, which does not
perfectly represent real commuting cost.
Most travelling in cities is in restricted roads
and may vary with the road conditions and
network (Wang, 1998), traffic speed, land
cover and terrain (Griffith and Wong, 2007).
Population density functions estimated from
different cities are not comparable because
of the variation in these conditions. Given
the scarcity of groundtruth data, there is a
general lack of empirical validation of the
population density functions based on more
realistic metrics of commuting cost such as
travel distance or travel time. Moreover, the
previous studies only focused on one city or
a small number of cities. The largest sample
size we identified in the literature is in the
study by Griffith and Wong (2007), which

modelled population density of the 20 larg-
est metropolitan areas in the USA. Other
than this, there is no nationwide assessment
of the population density functions with a
large sample of cities in different sizes.
Furthermore, most empirical studies of pop-
ulation density function were conducted in
the late 1990s and early 2000s, using even
earlier data sets. Given the rapid urban pop-
ulation growth, transportation and techno-
logical development of the past decades, a
study with up-to-date data is needed to re-
evaluate the classical models in modelling
the current shapes of US cities of different
sizes.

To fill the above-mentioned gaps in the
literature, this study provides an empirical
evaluation of population density functions
in the 382 Metropolitan Statistical Areas
(MSAs) in the USA using travel times to
MSA centres as the independent variable.
The travel times were acquired from the
crowdsourced mobility data in Google
Maps, which can be considered a more rea-
listic metric of commuting cost than the
Euclidean distance. Three commonly used
population density functions were evaluated
and their goodness-of-fit compared among
the MSAs. The overall best-fit function was
selected to analyse the variation of popula-
tion distribution among the MSAs as well as
the temporal change of population distribu-
tion from 1990 to 2016. In general, this
study aims to address the following ques-
tions: (1) are the classic population density
functions still valid when real travel time is
used as the independent variable? (2) Which
function can best describe the current form
of US cities? (3) Can all US cities of different
sizes be modelled by the same function? (4)
What are the temporal changes of popula-
tion distribution in US cities from 1990 to
2016?
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Data acquisition and processing

Metropolitan statistical area

The 382 Metropolitan Statistical Areas
defined by the United States Office of
Management and Budget were analysed in
this study. According to the US Census
Bureau (2010), an MSA is defined as a Core
Based Statistical Area associated with at
least one urbanised area that has a popula-
tion of at least 50,000. An MSA comprises
the central county or counties containing the
core, plus adjacent outlying counties having
a high degree of social and economic inte-
gration with the central county or counties
as measured through commuting. The iden-
tification of the centre of a city is a chal-
lenge. Most studies consider the city centre
as a point and apply various methods to
estimate the location of the point. For
instance, Batty and Sik Kim (1992) applied
centrographic analysis to locate the centre of
London, which is the mean centre estimated
from a set of population-weighted points.
This centrographic approach assumes that
the city centre is located among the most
populated districts, which is not always the
case. In some cities, the employment centre
may deviate from the population centre. In
other studies, city centres are defined as the
centroid of the Central Business District
(CBD) (e.g. Chen, 2010; Muñiz et al., 2003)
or landmarks that are widely perceived as
the city centres (e.g. Wang and Zhou, 1999;
Wang et al., 2018).

In this study, given the large number of
cities, manual identification of the CBD cen-
tres or central landmarks was impractical
and could be subjective, based on authors’
personal opinions. Instead, the geocoding
API of Google Maps� was used for auto-
mated identification of the centres of the
MSAs. The geocoding process includes the
following steps. First, the name of the princi-
pal city in an MSA is extracted from the full
MSA name. For instance, ‘New York’ was

extracted from the full MSA name ‘New
York-Newark-Jersey City, NY-NJ-PA’.
Next, the principal city name is concatenated
with ‘Downtown’ and the state abbreviation,
leading to the string ‘New York Downtown,
NY’ denoting the centre of the New York
MSA. Finally, the concatenated strings of all
MSA centres were used as inputs for the geo-
coding API, which returned the geometric
centroids (longitude and latitude) of the
downtown areas of the MSAs. The returned
geometric centroids were defined as the cen-
tres of the MSAs.

Population data

Population data from the census tracts of
1990 and 2016 were used to estimate the
population density functions. We assume
that a 26-year interval is sufficiently long to
capture the fundamental changes in popula-
tion pattern in US cities, avoiding short-
term fluctuations. Before 1990, some newly
developed cities were still rural areas and
these do not have enough census tracts for
the quantitative modelling. The 2016 popu-
lation data are from the 2012 to 2016 5-Year
Data of the American Community Survey
(available at: https://www.census.gov/),
which were the most recent population data
at the time of study and temporally close to
the travel time data. The 1990 data were
obtained from the National Historical
Geographic Information System (NHGIS)
hosted in the Minnesota Population Center
(available at: https://www.nhgis.org/). Land
cover data were used to eliminate uninhabi-
table areas (including water body, aquatic
bed, emergent herbaceous wetland and per-
ennial ice/snow) from the total areas of the
census tracts. The land cover data for the
contiguous USA and Alaska were obtained
from the 2011 National Land Cover
Database (NLCD, available at: https://
www.mrlc.gov/). The land cover data for
Hawaii were acquired from the 2010 data set
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of NOAA’s Coastal Change Analysis
Program (C-CAP, available at: https://
coast.noaa.gov/ccapftp/#/). The areas of the
census tracts excluding the uninhabitable
areas were used as the denominator in the
calculation of population density.

Travel time

Travel times from census tract centroids
(origin) to the geocoded MSA centres (desti-
nation) were acquired from the Direction
API of Google Maps. The API takes the
coordinates of the origin and destination as
the input, and exports the driving time
between them as the output. The travel times
were requested with the default setting of
the API, which returns driving times on the
shortest paths in average traffic conditions.
Figure 1a illustrates the travel times from
the census tract centroids to the geocoded
centre of the New York MSA. The travel
times returned by the API are estimated
from the aggregated movements of

individuals using Google Maps during their
travels. The travel times take into account
the road network topological structure, con-
nectivity and accessibility, as well as average
traffic congestion on the road. Thus, travel
time can be considered a more realistic
metric of commuting cost than Euclidean
distance. Figure 1b shows that the travel
times from the census tracts to the centre of
New York do not have a perfect linear rela-
tionship with the Euclidean distances. A
clear shift in the relationship at about 40
min (10 km) from the centre can be visually
identified, which indicates a systematic slow-
ing of travel speed (km/min) near the city
centre. The relationship between travel time
and Euclidean distance is influenced by the
density and configuration of the road net-
work, traffic conditions and environmental
obstacles (e.g. water bodies or steep terrain),
which vary in different cities. Such a non-
linear relationship justifies the use of travel
time as the independent variable in popula-
tion density functions.

Figure 1. (a) Driving time from census tracts to the centre of the New York MSA. (b) Scatter plot and
regression lines between travel times and Euclidean distances from the census tracts to the centre of the
New York MSA. The solid line denotes the regression line of census tracts within 40 min to the centre,
while the dashed line represents census tracts further than 40 min to the centre.
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As the census tract boundaries in 1990
and 2016 are not identical, the driving times
were queried for both data sets, leading to
115,422 (61,629 for 2016 and 53,793 for
1990) requests to the Google direction API.
According to the new billing model of the
Google Maps APIs since July 2018 (Google,
2019), the total cost of the requests is
US$577.11 (US$ 0.0005/request 3 115,442).
Google offers US$300 free activation credits
and US$200 monthly free credits per billing-
activated account. The total requests for the
census tracts can be paid off with the free
credits of two Google accounts. Additional
funding support is needed for the higher cost
of analyses at finer spatial resolutions (e.g.
block groups and blocks).

Analysis

Functions

The negative exponential, inverse power and
Gaussian function were evaluated in this
study. The independent variable of the func-
tions (denoted as x) is travel time to a city
centre and the dependent variable (y) is pop-
ulation density (Table 1). The negative expo-
nential function (Clark, 1951) and inverse
power function (Batty and Sik Kim, 1992)
both describe a monotonic decrease of pop-
ulation density from the centre, where the
coefficient a describes the scale of the rela-
tionship (i.e. the height of the curve) and b
determines the rate of decline (i.e. the shape
of the curve). With its origin in social phy-
sics, the inverse power function was being
widely exploited in gravitational models of

traffic flow and spatial interaction (Foot,
2017), where the parameter b describes the
elasticity of the curve. In contrast, the b
parameter in the exponential function indi-
cates density gradient, which is the percent-
age change in density (y) for a marginal
increase in distance (dx) (Batty and Sik
Kim, 1992). Density gradient has success-
fully characterised most North American cit-
ies in the 20th century. The value of the
density gradient varies from city to city with
city size, topography, political and socio-
economic contexts. A comprehensive review
of the conceptualisation and applications of
density gradient can be found in
(McDonald, 1997). Additionally, the
Gaussian function composes the exponential
function with a concave quadratic compo-
nent to describe a bell-shaped curve. The
coefficient a is a scale factor describing the
height of the bell-shaped curve, b indicates
the position of the curve peak in the x
dimension, c defines the shape of the curve.
The flexibility of the Gaussian function
allows it to describe a non-monotonous pop-
ulation pattern in a city (e.g. a central popu-
lation crater).

Data aggregation

Owing to the non-random distribution of
census tracts, the estimation of population
density functions using the original sample
of census tracts may lead to a severe upward
bias (Frankena, 1978). As shown in
Figure 2a, the number of census tracts in the
New York MSA peaks at around 40 min
and declines when moving in both

Table 1. The three evaluated functions and coefficient constraints.

Function name Function Coefficient constraints

Negative exponential function y = a � eb�x a.0 and b\0
Inverse power function y = a � xb a.0 and b\0
Gaussian function y = a � e � x�b

cð Þ
2

� �
a.0 and b.0 and c.0
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directions. Similar distributions can be
found in other MSAs. The function esti-
mated with the census tracts may over-fit the
middle range of travel times around 40 min
where the sample frequency is high, and
under-fit the two tails. Several approaches
were suggested to mitigate the sampling bias,
including weighting spatial units in propor-
tion to their areas in the regression (e.g.
Frankena, 1978; Wang and Zhou, 1999).
Taking the New York MSA as an example
(see Figure 2a), the weighted approach
would offset the bias by assigning higher
weights to the large census tracts distant (in
travel time) from the centre. The census
tracts near the centre (\30 min) are still
under-represented in the function estima-
tion. Additionally, the common indices of
goodness-of-fit (such as R2 and RMSE) are
not applicable for functions estimated using
the weighted approach. Wang et al. (2018)
suggested a Monte Carlo simulation
approach to resample population from cen-
sus units to uniform spatial units (e.g. square
and hexagon tessellation) to mitigate the
effect of the uneven sampling. Resampling
the population of the 382 cities using Wang
et al.’s approach would significantly increase

the computational workload and cost of the
Google API requests. Thus, the sensitivity of
the estimated functions to different spatial
units will be evaluated in future studies with
additional resources.

To mitigate the issue of the non-random
sample, census tracts were aggregated into
5-min intervals of travel time to the MSA
centres. The population density in a travel
time interval is calculated as the quotient
of the total population of census tracts
divided by total land area of the census
tracts in the interval. The calculation is
expressed as equation (1), where Pi is the
population of a census tract i in the travel
time interval t, Ai is the land area of the
census tract i, n is the number of census
tracts whose centroids are in the interval t.
As travel time is dependent on road net-
work and topography, an aggregated area
is typically an irregular shape and can be
non-contiguous, which is different from the
circular rings of distance intervals. Using
this approach, each 5-min interval has only
one data point and population density is
equally represented throughout the range
of travel time. Moreover, the aggregation
can eliminate local outliers and reflect the

Figure 2. (a) Counts and average area of census tracts in different travel times to the centre of the MSA
of New York. (b) Effect of the central population crater on the fitting of the exponential function in the
New York MSA.
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general trend of population density around
the principal city centre. The function esti-
mation is limited to census tracts within
90-min travel time from the centres because
of low variation of population density
beyond this point.

Dt =

Pn
i= 1 PiPn
i= 1 Ai

ð1Þ

Coefficient estimation

The negative exponential and inverse power
function both describe a monotonous
decline of population from city centres.
However, a central crater (depression) of
population density can be found in many
cities (Muñiz et al., 2003; Newling, 1969)
because of the spatial extent of the CBD
where the primary land use is commercial
and the residential population is relatively
small. The central crater may pull down
curves of the exponential and power equa-
tion near the city centre, leading to poorer
fit in the outskirts. Some researchers suggest
removing the first data point near city cen-
tres in the function estimation (Banks, 2013;
Chen, 2010; Clark, 1951). However, popula-
tion craters of some MSAs extend more
than one travel time interval from the cen-
tres and the spatial extent of the craters var-
ies in different cities. To eliminate the effect

of the population craters in the 382 MSAs,
the estimation of all the three functions was
set to start from the interval at the peak of
population density. Intervals from the centre
to the peak were excluded. Figure 2b illus-
trates the effect of the population crater on
the estimated functions. After eliminating
the data points in the crater, the derived
function (solid curve) better describes the
declining pattern of population density out-
side of the crater.

The coefficients of the functions were esti-
mated using the non-linear least square (NLS)
method in the Matlab� Curve-Fitting
Toolbox. Two rounds of fitting were carried
out. First, an exploratory fitting process was
performed without bounding intervals of the
coefficients. Coefficients of the functions were
calibrated for each MSA. The coefficients that
significantly deviated from the majority distri-
bution were identified as outliers. Bounding
intervals of the coefficients are defined within
reasonable ranges excluding the outliers.
Second, the coefficients of the functions were
estimated again with the bounding intervals
derived in the first round. The bounding inter-
vals can narrow the search space and facilitate
convergence of the fitting programme. The
coefficients derived in the second round of
estimation were adopted for further analysis.
The coefficient bounding intervals can be
found in Table 2.

Table 2. Results of function fitting for the MSAs.

Function name Function Bounding
intervals
of coefficients

Average
RMSE

Number and
percentage
of best
fitted MSAs
(lowest RMSE)

Mean
population
of the best
fitted
MSAs

Negative
exponential

y = a � eb�x a 2 ½0, 1000 b 2 �‘, 0ð � 0.1060 145 (38.0%) 767,633

Inverse power y = a � xb a 2 0,‘½ Þ
b 2 �100, 0½ Þ

0.1270 126 (33.0%) 473,533

Gaussian y = a � e � x�b
cð Þ

2
� �

a 2 0,‘½ Þ
b 2 0, 40½ � c 2 0, 100½ �

0.1222 111 (29.1%) 914,227
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The coefficients of the three functions
were first estimated using the 2016 census
tract population data. The goodness-of-fit of
the three functions was evaluated. Student’s
t-tests were used to compare the population
of MSAs best fitted in different functions.
The function with the overall best fit for the
MSAs was identified as the primary func-
tion. Then, the coefficients of the primary
function were estimated again using the 1990
population data. The differences of the coef-
ficients between the two years were com-
pared to analyse the temporal change of
urban population distribution in US cities.

Results

Goodness-of-fit

The curves of the estimated functions in the
12 largest MSAs ranked by population are

illustrated in Figure 3, in which a general
declining trend of population density from
the city centres can be observed. Central
population craters are prominent in some
MSAs such as New York, Los Angeles,
Dallas and Phoenix. Comparing the good-
ness-of-fit, the negative exponential function
has the lowest average RMSE in the 382
MSAs, followed by the Gaussian and inverse
power function (Table 2); 38% of the MSAs
were best fitted (lowest RMSE) in the expo-
nential function, followed by 33% and 29%
best fitted in the Gaussian and inverse power
functions, respectively. The mean population
of the MSAs best fitted in the Gaussian
function is the largest, followed by the expo-
nential and then the power function (Table
2). The result of the Student’s t-test indicates
that the populations of the MSAs best fitted
in the exponential and Gaussian functions
are significantly (p \ 0.05) larger than the

Figure 3. Curves of the estimated functions (exponential, power and Gaussian) of the 12 largest MSAs
ordered by 2016 population.
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MSAs fitted in the power function. The
populations of the MSAs fitted in the expo-
nential and Gaussian function are not signif-
icantly different in the t-test (p = 0.5427).
Additionally, the negative exponential func-
tion has systematically underestimated the
population density near the centres of large

cities. The average residual (actual density –
predicted density) of the exponential func-
tion in the first interval (0–5 min) near the
centre is negative. Such a negative residual
was found in 204 of the 382 MSAs (53.4%).
These MSAs have an average population of
786,658 compared with the average

Figure 4. The original distribution of MSA populations (left) and the distribution of natural logarithms of
the populations (right).

Figure 5. (a) Regression analysis of population logarithms and absolute values of the coefficient b (abs(b))
in the exponential function; (b) regression analysis of population logarithms and ratios of change of abs(b)
between 1990 and 2016.
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population of 629,062 of the MSAs with a
positive residual. This result indicates that
the negative exponential function, despite
the overall best fit, cannot well describe the
central population craters in the large cities.

Changes of centrality

The negative exponential function, which
has overall the best fit (lowest RMSE and
fitting most MSAs), was selected as the pri-
mary function to analyse urban population
distribution in the MSAs. In the negative
exponential function, the coefficient a
defines the theoretical population density in
the centre of the city (i.e. travel time = 0).
The coefficient b indicates the rate of dis-
tance decay of population density (i.e. den-
sity gradient) from the centre. Thus, b is
often used to describe the centrality of a city
(e.g. Bunting et al., 2002; Mills and Tan,
1980). As b is constrained to negative, a high
absolute value of b (denoted as abs(b)) indi-
cates that population is more centralised
around the city centre and the density
quickly declines when moving away from
the centre. A low abs(b) means the opposite:

population is more spread out to areas
farther from the centre.

Regression analysis was conducted to
analyse the relation between the MSA popu-
lations and the coefficient b in the exponen-
tial function. As the distribution of the city
populations is highly skewed to the left (see
Figure 4), natural logarithms of the popula-
tions were used in the regression. The result
shows a significant negative linear relation
(p \ 0.001) between the two quantities
(Figure 5a), which indicates that the central-
ity of the MSAs decreases as the population
increases. By comparing the values of abs(b)
estimated using the 1990 and 2016 popula-
tion data, it is known that 270 (70.1%) of
the MSAs had a decentralisation trend (i.e.
decreased abs(b)) during the period, while
the other 112 (29.3%) MSAs became more
centralised (increased abs(b)). The ratios of
change of abs bð Þ (i.e. abs b2016ð Þ � absð
b1990ð ÞÞ=abs b1990ð Þ) also show a significant
negative linear relation (p = 0.0387) with
the population logarithms (Figure 5b),
meaning that larger MSAs tend to have a
higher rate of decentralisation during the
period, while MSAs with a smaller

Figure 6. Centralised and decentralised MSAs between 1990 and 2016. The background is kernel density
created from the MSAs coded with binary values (1: decentralised and 21: centralised).
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population have a lower decentralisation
rate or even a centralisation trend. As shown
in Figure 6, the decentralisation trend is pre-
valent in most US cities, except several iden-
tifiable clusters of centralised MSAs in the
north-east (e.g. Maine and Massachusetts),
south (Louisiana, Texas and Alabama), and
the north-west (Oregon and Washington)
regions.

Discussion

This study used travel time as the indepen-
dent variable to evaluate the three classic
population density functions. Compared
with Euclidean distance, travel time is a
more meaningful measure of commuting
cost, which takes into account the conditions
of the road network, traffic, land cover and
topography. Population density functions
based on travel times can provide more com-
parable information about population pat-
terns among cities in different conditions.
This study also demonstrated the advantages
of crowdsourced data, including low cost,
easy acquisition and feasibility for large-
scale analysis. The increasing availability of
such data in the Web 2.0 era will greatly
benefit future studies of urban population
distribution at finer spatial and temporal
resolutions. Beyond the study of population
density, the demonstrated methods and data
can be applied to analyse the relations of
other socio-economic patterns (e.g. income,
race and health) with travel time to city
centres.

The results of the analysis suggest that
different functions should be applied to
describe cities of different sizes. In general,
the Gaussian and exponential functions have
a better fit for larger MSAs while the power
function better fits smaller MSAs.
Population in small cities is highly concen-
trated near the centres and declines sharply
within a short travel time from the centres.
This pattern can be better described by the

inverse power function. In large cities, popu-
lation density declines relatively more slowly
from the centres, which were better fitted in
the exponential and Gaussian functions.
Compared with the negative exponential
function, the Gaussian function can better
describe the population density in large cities
where the central crater is prominent. This is
also confirmed by the negative residuals near
the city centres of the negative exponential
function.

The result reveals a decreasing trend of
centrality (i.e. decreasing abs(b)) from small
to large cities. This finding confirmed the
suburbanisation trend in large cities, where
population migrate from city centres to the
outskirts for lower housing prices, healthier
and higher standards of living (Jacobs, 1961;
Mieszkowski and Smith, 1991). The lower
centrality of large cities can also be explained
by the polycentric urban form where subcen-
tres of employment emerge in the outskirts,
which pull population away from the origi-
nal centres (Feng et al., 2009; Muñiz et al.,
2008). The comparison of urban centrality
between 1990 and 2016 shows that the
majority of US cities have undergone a
decentralisation process during the period.

The observed trend of urban sprawl may
cause adverse environmental and societal
consequences. Excessive urban sprawl would
encroach on agricultural land, fragment crit-
ical habitats and threaten endangered ecolo-
gical systems (Sheridan, 2007). Additionally,
urban sprawl increases long home–work
commuting, and generates traffic conges-
tion, which contributes to air pollution and
increased energy consumption (Martinuzzi
et al., 2007). The continuous suburban
growth in large cities may reduce the incen-
tive for re-development of land closer to city
centres, leading to the decay of downtown
areas (Brueckner, 2000) and concentration
of poverty in the central urban areas
(Downs, 1999). As well as the central popu-
lation crater revealed in this study, other
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types of craters (e.g. income, health and
race) are likely to develop with the continu-
ous outspreading of population. The out-
flowing population towards low-density
suburban and rural areas may reduce social
interaction, weakening people’s bonds to
places that underpin a sustainable commu-
nity. Not only in the large cities; the sprawl-
ing trend is likely to accelerate in the small
cities too as population grows. To mitigate
the adverse impact of this trend, appropriate
zoning regulations (e.g. farmland and open
space preservation) and policies (e.g. devel-
opment tax and congestion tax) should be
implemented to regulate land use in a more
sustainable way. The methods and analysis
results in this study provide important base-
line information for monitoring the trend of
urban sprawl and evaluating the effective-
ness of the strategies.

Population growth, rising household
incomes and transportation improvements
are deemed to have been the driving factors
of urban sprawl in the past century
(Mieszkowski and Mills, 1993). In the
future, urban sprawl can be driven by tech-
nological revolutions. For instance, con-
nected and autonomous vehicles (AVs) are
expected to further boost human mobility,
reduce travel costs and change travel beha-
viour. According to the US Department of
Transportation (USDOT) Research and
Innovative Technology Administration
(RITA), 81% of all vehicle-involved crashes
can be avoided or mitigated based on con-
nected vehicle technologies. Existing studies
(Texas A&M Transportation Institute,
2013) indicate that 75% of vehicles will be
AVs by 2040. Travel costs can be signifi-
cantly reduced through shortened travel
times when AVs are used. Moreover, the
advancing communication technologies (e.g.
the 5G cellular network) point towards a
future in which telecommuting and video-
conferencing would reduce the importance
of geographical proximity to city centres

(Castells, 1991; Muñiz and Garcia-López,
2010). These technological changes would
further accelerate urban decentralisation
and land cover change.

Several issues should be noted when inter-
preting the results. First, the travel times in
this study, which were retrieved in July 2018,
reflect the road and traffic conditions at that
time. There is uncertainty in the estimated
functions in 1990, as well as the comparison
of urban centrality between 1990 and 2016.
Given the worsening traffic conditions and
slowing driving speeds in US cities in the
past decades (Schrank et al., 2015), the
actual travel times in 1990 are generally
lower than under current conditions. Thus,
this study has possibly underestimated the
rate of decentralisation of the MSAs during
the period. Ideally, the 1990 functions should
be adjusted by a factor of the travel time
reduction to describe more accurate popula-
tion patterns at that time. However, this fac-
tor varies in different cities and in different
places in the cities. Additionally, the crowd-
sourced data are often criticised for their low
accuracy and biased sampling. The quality
of the data collected from the Google Maps
APIs need systematic validation with
groundtruth data. Second, this study is lim-
ited to monocentric urban functions. In
future studies, the polycentric model should
be adopted to model the increasing diversity
and complexity of modern cities. Local
deviations caused by spatial autocorrelations
should be addressed to improve the function
fitting. Third, the aggregation unit of popu-
lation may affect the function estimation (as
shown in Wang et al., 2018). The sensitivity
of the results to the change of aggregation
units (e.g. block group or uniform units)
should be analysed in future studies.

Conclusion

This study provides an empirical evaluation
of the classic population density functions in
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the 382 MSAs in the USA using real travel
times to city centres as the independent vari-
able. The study demonstrated the utility of
emerging data sources (i.e. crowdsourced
data) for validating the classic urban eco-
nomic theories. The major findings of the
study include that (1) the negative exponen-
tial function has the overall best fit for popu-
lation density in the MSAs; (2) the Gaussian
and exponential functions tend to fit larger
MSAs, while the power function has better
performance in modelling small MSAs; (3)
the majority of the MSAs appeared to have
a decentralisation trend during 1990–2016,
and larger MSAs tend to have a higher rate
of decentralisation. This study leverages
crowdsourced geospatial data to provide
empirical evidence of the classic urban eco-
nomic models. The findings will increase
understanding about urban morphology,
population–job displacement, and urban
decentralisation. The derived functions pro-
vide baseline information to monitor and
predict the changing trend of urban popula-
tion distribution that could be driven by
future environmental and technological
changes.
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