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A B S T R A C T

A major challenge for measuring community resilience is the lack of empirical observations in disasters. As an
effective tool to observe human activities on the earth surface, night-time light (NTL) remote sensing images can
fill the gap of empirical data for measuring community resilience in natural disasters. This study introduces a
quantitative framework to model recovery patterns of economic activity in a natural disaster using the Defense
Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) images. The utility of the framework
is demonstrated in a retrospective study of Hurricane Katrina, which uncovered the great economic impact of
Katrina and spatial variation of the disturbance and recovery pattern of economic activity. Environmental and
socio-economic factors that potentially influence economic recovery were explored in statistical analyses.
Instead of a static and holistic index, the framework measures resilience as a dynamic process. The analysis
results provide actionable information for prompting resilience in diverse communities and in different phases of
a disaster. In addition to Hurricane Katrina, the resilience modeling framework is applicable for other disaster
types. The introduced approaches and findings increase our understanding about the complexity of community
resilience and provide support for developing resilient and sustainable communities.

1. Introduction

Due to climate change and rapid population growth, human society
is faced with increasing threats from natural disasters that can cause
significant socio-economic consequences. Coastal communities around
the world are particularly vulnerable to natural disasters including both
large-scale rapid-moving disturbances such as hurricane and storm
surges (Tebaldi, Strauss, & Zervas, 2012), and the slow-moving pro-
cesses such as coastal erosion, sea level rise (Nicholls, Hoozemans, &
Marchand, 1999) and reduction of ecosystem services (Spalding et al.,
2014). According to the data from U.S. Census Bureau (2011), 39 % of
the total population in the United States are living in counties directly
on the shorelines and the population density in coastal counties is more
than four times the average density of the whole United States. Since
2005 when Hurricane Katrina and Rita caused catastrophic damage in
Central Gulf Coast, much attention has been paid to the resilience and
long-term sustainability of coastal communities. Empirical observations
suggest that, under the same strength of disasters, different commu-
nities endured different levels of disturbance and presented different
recovery patterns in socio-economic (Finch, Emrich, & Cutter, 2010;

Fussell, Sastry, & VanLandingham, 2010), health (Burton, 2006; Sastry
& VanLandingham, 2009), and psychological conditions (Adeola,
2009). These observed disparities can be attributed to various resilience
of the communities.

Resilience describes the ability of an individual or a system to adapt
to and recover from external shocks or stresses (Adger, 2000). Although
substantial knowledge has been gained on ecological resilience (Perz,
Muñoz-Carpena, Kiker, & Holt, 2013) and engineering resilience (Yodo
& Wang, 2016), there is yet a consensus on how to measure resilience of
human communities due to their complexity. In general, quantitative
assessment of community resilience is challenged by two issues. First,
the definition of community resilience various in different domains,
which will be discussed in Section 2.1. Moreover, resilience is often
used interchangeably with other relevant concepts such as vulnerability
and adaptive capacity. The various definitions and conceptual frame-
works of community resilience influence how researchers measure re-
silience (Cutter et al., 2008; Lam, Reams, Li, Li, & Mata, 2016; Sherrieb,
Norris, & Galea, 2010). The definition disagreement hampers the de-
velopment of standard metrics to measure resilience. Second, there is
lack of empirical data and approaches to quantify community
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resilience. Most of the existing assessments are based on an index ap-
proach, which integrates a set of presumed indicators into a composite
score to measure resilience (Cutter, Burton, & Emrich, 2010; Hung,
Yang, Chien, & Liu, 2016; Sempier, Swann, Emmer, Sempier, &
Schneider, 2010; Sherrieb et al., 2010). The model specification, in-
dicator selection and weighting are based on prior knowledge or expert
opinions. Although these indices provide general guidance for pre-
dicting community resilience, their accuracies have not been validated
against empirical observations in disasters (Bakkensen, Fox‐Lent, Read,
& Linkov, 2017; Beccari, 2016).

Empirical data about human activities and states are difficult to
obtain in a disaster condition when many social systems fail to function.
Traditional data sources for resilience assessment (e.g. surveys and
census data) have limitations in various aspects, which will be elabo-
rated in the next section. Recently, remote sensing imageries become
popular instruments to monitor human dynamics on the earth surface
such as urban growth (Shahtahmassebi et al., 2016), land cover change
(Joshi et al., 2016), and socio-economic conditions (Kuffer, Pfeffer, &
Sliuzas, 2016). Among the various remote sensing products, night-time
light (NTL) remote sensing has unique ability to capture fluctuations of
human activities, which can provide empirical data for resilience as-
sessment. This study introduces a quantitative framework to assess
community resilience using the DMSP-OLS NTL annual composite
images as the data source. Specifically, stable lights in the time series of
DMSP-OLS annual images are used as a proxy to model recovery pat-
terns of economic activity after Hurricane Katrina in 2005. Spatial and
statistical analyses are conducted to explore the geographical dis-
parities of the recovery patterns and their relationships with the se-
lected resilience indicators. Specific questions answered in the case
study are: 1) which communities appeared to be more or less resilient in
the disaster; 2) how the observed resilience levels are associated with
the environmental and socio-economic conditions? The introduced
framework aims to fill the critical gap of empirical data and assessment
methods for community resilience. The analysis results from the case
study increase our understanding about community resilience and
provide actionable information to predict and prompt community re-
silience.

The rest of the article is organized as follows. Section 2 briefly re-
views the related work about the definitions, conceptual frameworks
and assessment methods of community resilience. Section 3 introduces
the data sources, assessment framework of community resilience based
on NTL data and statistical analyses. Section 4 presents the analysis
results in the case study of Hurricane Katrina, followed by the discus-
sions in Section 5 and conclusions in Section 6.

2. Related work

2.1. Definition and conceptual framework

The concept of resilience was first introduced by Holling (1973),
who views resilience as the ability of an ecological system to absorb
change in the face of extreme perturbation and yet continue to persist.
Later, Timmerman (1981) applied the concept of resilience to social
systems and defined resilience as the measure of a system’s capacity to
absorb and recover from disastrous events. The resilience of a social
system is also known as community resilience. Extending Timmerman’s
definition, Cutter et al. (2008) further elaborated that community re-
silience includes both the inherent conditions of a system to absorb
impacts and cope with an event and post-event, adaptive processes that
facilitate the ability of the social system to re-organize, change, and
learn in response to a threat. Norris, Stevens, Pfefferbaum, Wyche, and
Pfefferbaum (2008) considered resilience as a process linking commu-
nities’ capacities in response to the disturbance. In the field of en-
gineering and infrastructure systems, resilience describes the ability of
resisting and absorbing disturbances and the ability of adapting to
disruptions, and returning to normal functionalities (Faturechi & Miller-

Hooks, 2015). Extensive reviews about the definitions of resilience and
the related terms can be found in (Cutter et al., 2008; Lam et al., 2016;
Liao, 2012; Peacock, 2010). Despite the various definitions in the lit-
erature, community resilience is often associated with two abilities: 1)
the ability to absorb/resist/withstand disturbance, and 2) the ability to
respond/recover/restore the acceptable level of functioning and struc-
ture.

In addition to the qualitative descriptions, a number of theoretical
frameworks have been developed to quantify community resilience. For
instance, Cutter et al. (2010), Cutter, Ash, & Emrich (2014) define that
resilience consists of six components including social, economic, in-
frastructural, institutional, community, and environmental, which is
used as a guidance to select indicators for resilience indices. Lam et al.
(2016) measure resilience from the relationships among exposure, da-
mage and recovery. Additionally, resilience can be conceptualized as a
dynamic process such as the recovery trajectory (also known as re-
covery curve), which describes the continuous change of a functional
capacity of a system affected by a disturbance (e.g. natural disaster).
The functional capacity could be the social and economic capacity of a
human community (White, Edwards, Farrar, & Plodinec, 2015), bio-
mass or population of an ecological community (Qiang & Xu, 2019;
Vercelloni, Kayal, Chancerelle, & Planes, 2019), or the functionality or
serviceability of an infrastructure system (Koliou et al., 2018). The
Curve A, B and C in Fig. 1 illustrates common scenarios of resilience
from high to low, where the functional capacity suddenly declines after
a disturbance, gradually recovers afterwards, and finally restores to the
pre-disaster condition (e.g. Trajectory B) or a new equilibrium (Tra-
jectory A and C). Given the same strength of disaster, the variation of
the recovery trajectory is indicative of community resilience. The
maximum deviation from the pre-disaster condition (i.e. maximum
disturbance) reflects the ability of a system to absorb/resist/withstand
disturbance from the disaster. The recovery speed or time indicates the
ability to respond/recover/restore the functional capacity.

2.2. Resilience assessment – index approaches

Previous work of resilience assessment is mostly based on an index
approach, which aggregates a number of socio-economic and environ-
mental indicators into an overall resilience index. The Baseline
Resilience Index for Communities (BRIC) developed by Cutter et al.
(2010) is one of the first and most cited resilience index. Analogous to
the previous work of the Social Vulnerability Index (SoVI) (Cutter,
Boruff, & Shirley, 2003), BRIC is aggregated from 36 indicators of the
baseline characteristics of community resilience. The indicators are
rescaled into [0,1] and then aggregated in five categories including
social, economic, institutional, infrastructure, and community. The
overall BRIC index is the summation of the aggregated indices in the

Fig. 1. Recovery trajectory of a system due to an external disturbance. Curve A,
B and C represent three possible scenarios of resilience from high to low.
(Modified from White et al., 2015)

Y. Qiang, et al. Sustainable Cities and Society 57 (2020) 102115

2



five categories. Analogously, the Community Disaster Resilience Index
(CDRI) by (Peacock, 2010) categorizes resilience indicators into a 4 × 4
matrix with capital domains (i.e. the social, economic, physical, and
human capital) and disaster phases (i.e. the mitigation, preparedness,
response and recovery phase). The selected indicators are aggregated in
16 categories in the matrix, which are then aggregated into the CDRI
index. Other work on resilience indices include (Foster, 2012; Hung
et al., 2016; Sherrieb et al., 2010). Although these indices provide
general predictions of resilience by integrating prior knowledge and
expert opinions, they do not inform specific disaster outcomes. For
instance, it is unclear whether a high resilience index implies low
property loss, low casualty and injury, or fast economic recovery. The
unspecified outcomes diminish the value of the indices for specific
decision-making. Moreover, most of the resilience indices have not
been calibrated or validated against empirical observations. Bakkensen
et al. (2017) validated the BRIC and CDRI with observed losses, fatal-
ities, and disaster declarations, and found low or even contradictory
correlations between the indices and disaster outcomes.

2.3. Resilience assessment – empirical approaches

In addition to the index approach, efforts have been made to assess
community resilience using empirical observations in disasters. For
instance, Lam, Pace, Campanella, LeSage, and Arenas (2009) and
LeSage, Pace, Lam, Campanella, and Liu (2011) conducted a series of
telephone and street surveys to continuously monitor business re-
opening in New Orleans after Hurricane Katrina. The time series of
open businesses resemble the recovery trajectory illustrated in Fig. 1,
which declines sharply after Katrina and gradually recovers afterwards.
The various recovery patterns in different communities were associated
with environmental and socio-economic variables to explain why some
communities restored businesses more quickly than others. However,
the surveys were costly, labor-intensive and time consuming, which is
not widely applicable. Later, (Lam, Qiang, Arenas, Brito, & Liu, 2015;
Lam, Reams, Li, Li, & Mata, 2016) developed the Resilience Inference
Model (RIM) which uses the number of disasters, damage and popula-
tion growth as proxies to measure community resilience. Based on ag-
gregated data in a 10-year period, the RIM model considers that a re-
silient community can resist damage and maintain high population
growth while endured a high number of disasters. Recently, with the
advent of the Big Data era, data crowdsourcing and social media plat-
forms provide new opportunities to observe individuals’ activities and
narratives at finer spatial and temporal resolutions. For instance, Zou,
Lam, Cai, & Qiang (2018) used the frequency and sentiment of geo-
tagged Twitter messages (tweets) to monitor dynamic conditions of
communities in Hurricane Sandy. The recovery trajectories of com-
munities can be reflected from time series of ratios and average senti-
ment of tweets during the disaster. Timeliness, low cost and scalability
are the main advantages of social media data. However, the Big Data
approaches are criticized for the biased user profile (Zou, Lam, Shams
et al., 2018) and low data quality (much noise and misinformation) (Li
et al., 2016).

2.4. Remote sensing for disaster management

Remotely sensed imageries have been widely applied in disaster risk
mapping (Bates, 2004; Hong, Adler, & Huffman, 2007) and damage
assessment (Cooner, Shao, & Campbell, 2016; Dong & Shan, 2013;
Vetrivel, Gerke, Kerle, Nex, & Vosselman, 2018). However, most remote
sensing products are not very useful for resilience assessment due to
their insensitivity to decline of human activity. For instance, it is dif-
ficult to detect a ‘ghost town’ or a damaged city from Landsat images.
As an alternative, nighttime light (NTL) remote sensing images have
been proved an effective means to observe the dynamics (both increase
and decline) of population (Zhuo et al., 2009), urbanization (Xie &
Weng, 2017) and economic activities (Li, Ge, & Chen, 2013). A

comprehensive review of applications of NTL data can be found in
(Huang, Yang, Gao, Yang, & Zhao, 2014). For disaster management, the
NTL data have been applied to identify damage (Gillespie, Frankenberg,
Chum, & Thomas, 2014; Kohiyama et al., 2004), power outage
(Hultquist, Simpson, Cervone, & Huang, 2015; Zhao et al., 2018), and
analyze the change of human activities (Li, Zhan, Tao, & Li, 2018) and
urbanization (Huang, Wang, & Lu, 2019) affected by disasters. Despite
these applications, the utility of NTL data in modeling community re-
silience has not been fully exploited in a theoretical framework. Ex-
tending the conceptual framework of recovery trajectory, this study
introduces a quantitative approach to model resilience using DMSP/
OLS NTL images as the data source.

3. Method

3.1. Inter-calibration of NTL images

The Stable Lights images collected by the Defense Meteorological
Satellite Program Operational Line Scanner (DMSP/OLS) were used for
this study. The images are cloud-free composites created using all the
available archived DMSP-OLS smooth resolution data from the year
1992 to 2013. The DMSP/OLS images include 34 annual composites at
a 30 arc second resolution collected by six different satellites (F10, F12,
F14, F15, F16, and F18). Due to the absence of inter-satellite calibration
and onboard calibration, the digital numbers (DN) in the DMSP-OLS
images cannot be converted to exact radiance. To analyze continuous
recovery trajectories over time, the DMSP-OLS images need to be ca-
librated to make the images in different years and satellites comparable.
A widely applied inter-calibration procedure was proposed by (Elvidge
et al., 2009), which uses a quadratic polynomial regression to adjust the
DNs against a reference image (see Eq. (1)).

= + ∙ + ∙DN a a DN a DNcalibrated 1 2 3
2 (1)

The inter-calibration process follows the same procedure as in-
troduced in (Elvidge et al., 2009). By reviewing the data, it was found
that the image F121999 has the highest average DN in the United
States. Due to the saturation of the DMSP/OLS in bright areas (e.g. city
centers), the F121999 was used as the reference image and all other
images were calibrated to match the DNs in F121999. Los Angeles was
chosen as the reference site, as it has been a mature metropolis where
the light change is negligible (Hsu, Baugh, Ghosh, Zhizhin, & Elvidge,
2015). Due to the uneven distribution of DNs in the images, a random
sampling will lead to overfit near the two extremes of DNs (i.e. 1 and
63) where pixels are concentrated. To ensure the regression equations
evenly fit the entire value range, a stratified sample of lit pixels (200
pixels in each DN value) were extracted in the reference site for the
calibration. The 2nd order regression equation was calibrated for each
image with the reference to F121999. The coefficients of the regression
equations are in Table 1. After the calibration, images in the same year
were averaged into one image, leading to a time series of annual images
from 1992 to 2013.

3.2. Estimation of gross domestic product

The inter-calibrated DMSP-OLS images were clipped in the affected
area in Hurricane Katrina, which include 179 counties declared as
disaster areas by the Federal Emergency Management Agency (FEMA).
Hurricane Katrina made the first landfall in Florida on August 25th,
2005 and the second in Louisiana on August 29th, 2005. The disaster
areas include the entire Louisiana (64 parishes) and Mississippi (82
counties), 22 counties in Alabama, and 11 counties in Florida (Fig. 2).
Zonal operation was applied to aggregate the DNs in the counties. After
logarithm transformation, the sum of DNs and number of lit pixels can
well predict ( =R2 0.92) the gross domestic product (GDP) in the 179
counties in a linear model (Eq. (2)). The goodness of fit (i.e. R2) is
highest for GDP compared to other economic indicators (e.g. personal
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income, number of employees and business establishments). As county-
level GPD data in the U.S. is only available in 2012–2015 (Bureau of
Economic Analysis, U.S. Department of Commerce, 2018), the GDP data
and DMSP-OLS images in 2012 and 2013 (the overlapping years of the
two data sources) were used to derive the regression equation. All the
GDP data are adjusted to the value of current U.S. dollar. Finally, the
GDP of the counties from 1992 to 2013 was estimated using Eq. (3).

= ∙ − ∙ −GDP DN litlog( ) 3.375 log( ) 2.548 log( ) 1.761sum DN2003,2004 (2)

=−
∙ − ∙ −GDP e DN lit

1992 2013
(3.375 log( ) 2.548 log( ) 1.761)sum DN (3)

3.3. Measurement framework

The estimated GDP was analyzed in the framework in Fig. 3 to as-
sess the resilience of the counties. The GDP of each county is rescaled
into [0, 1] to be comparable. Two regression lines were derived for the
normalized GDP from 1992 to 2004 and from 2005 to 2013 to represent
the pre- and post-Katrina economic trajectory respectively. Although
various models are available for GDP projection, the linear model is still
considered a valid benchmark to project GDP growth in the U.S.
(Ferrara, Marcellino, & Mogliani, 2015; Marcellino, 2008), especially in
the recent decades when the volatility of US GDP growth tend to decline
(Burren & Neusser, 2010). Despite the slight decline (-1.8 %) in 2009
due to the financial crisis, the annual GDP in the U.S. from 1990 to
2018 generally follows a linear trend (World Bank, 2019). The exten-
sion of the pre-Katrina trajectory (thin dashed line in Fig. 3) represents
the business-as-usual condition as if the pre-Katrina economic growth
persists.

Three metrics were calculated for each county. First, the difference
between the projected GDP in the business-as-usual trajectory
( f (2005))pre and the actual 2005 GDP in the post-Katrina trajectory

( f (2005))post was calculated to represent instant economic disturbance
caused by Katrina (Eq. (4)). This metric (denoted as D for simplicity)
measures the ability of a system to absorb/resist/withstand disturbance
in a disaster. Second, the difference between the slope of the post-dis-
aster trajectory (r2) and the slope of business-as-usual trajectory (r1) was
calculated to indicate the recovering rate (Rr) of GDP after Katrina (Eq.
(5)). A high (positive) Rr would implies a strong ability to respond/
recover/restore the GDP growth to catch up with the business-as-usual
trajectory. Third, the accumulated difference between the post-disaster
GDP and the business-as-usual GDP from 2005 to 2013 was calculated
using Eq. (6). This metrics measures the accumulated economic loss (L)
due to the deviation of GDP growth from the business-as-usual trajec-
tory, which is illustrated as the grey area in Fig. 3. L represents the
combined effect of D and RR. A high L can be interpreted as low resi-
lience, which typically consists of a high instant disturbance (D) and
slow recovery (Rr). A low L means the opposite. L differentiates the
intermediate situations such as high D and high Rr or low D and low Rr.
L is calculated from 2005 to 2013 after Katrina when the DMSP-OLS
images are available.

= −D f f(2005) (2005)pre post (4)

= −R r rr 2 1 (5)

∫= −L f t f t( ( ) ( ))pre post
2005

2013

(6)

3.4. Regression analysis

Regression analyses were applied to examine the associations of the
three resilience metrics (D, RR and L) with environmental and socio-
economic variables. The selected variables fall into four categories,
including impact intensity, environmental, socio-economic, and in-
dustrial structure. Max wind gust speed and accumulated rainfall re-
present the destructive power of a hurricane (NOAA, 2006). Elevation,
proximity to coast and ratio of urban in flood zones indicate the ex-
posure to Hurricane-induced storm surge and flooding (Dasgupta,
Laplante, Murray, & Wheeler, 2011; Jonkman, Maaskant, Boyd, &
Levitan, 2009). The socio-economic category includes 10 commonly
used indicators in community resilience measurements (Cai, Lam, Zou,
& Qiang, 2018; Cutter et al., 2014). Ratios of establishments in different
scales and industrial sectors represent the industry structure, which
potentially influences economic recovery (Martin & Sunley, 2015).
Most of the variables were acquired from datasets released before 2005
to represent pre-disaster conditions. Variables that are not reported in
counties were preprocessed and averaged into counties (Table 2). In-
stead of composing a comprehensive index for resilience, the objective
of the analysis is examining the relationships between the GDP recovery
trajectories and the hypothetical resilience indicators.

Two types of regression analysis were carried out in this study. First,
univariate regression was applied to examine the relationships between
D, RR and L and each individual variable. Second, multivariate regres-
sion was utilized to relate the three metrics with all the variables and
variables in the four categories. R2 of the multivariate regression in-
dicates the proportion of variance explained by the different categories
of variables. Adjusted R2 were compared to evaluate the prediction
power of the different categories for the recovery metrics. The regres-
sion analyses aim to explore the underlying factors that influence re-
silience and proportion of resilience variance that can be explained by
the variables. All variables were re-scaled into z-scores for the regres-
sion analyses. Thus the b coefficient of the regression represents the
direction and standard deviations of the relationship. The regression
analyses were conducted in the linear model (lm) function in R.

Table 1
Coefficients of the quadratic polynomial regression for inter-calibration.

Satellite Year a1 a2 a3 R2

F10 1992 0.99490 1.19694 −0.00419 0.84241
F10 1993 −0.53668 1.51570 −0.00845 0.90954
F10 1994 1.09383 1.46457 −0.00852 0.87570
F12 1994 0.68785 1.22501 −0.00428 0.88668
F12 1995 1.29538 1.19446 −0.00428 0.88056
F12 1996 0.52894 1.33022 −0.00633 0.87521
F12 1997 1.47600 1.18090 −0.00472 0.83470
F12 1998 0.92953 1.08940 −0.00259 0.92079
F12 1999 1 1 1 1
F14 1997 2.04904 1.55982 −0.01079 0.85754
F14 1998 0.94451 1.55107 −0.00977 0.95204
F14 1999 0.80845 1.52425 −0.00911 0.95928
F14 2000 2.42372 1.29577 −0.00605 0.90692
F14 2001 2.51390 1.43262 −0.00829 0.91364
F14 2002 3.59977 1.34024 −0.00760 0.87948
F14 2003 3.05182 1.37950 −0.00788 0.90928
F15 2000 0.55891 1.15751 −0.00315 0.94024
F15 2001 0.57387 1.23965 −0.00433 0.93629
F15 2002 1.30027 1.19630 −0.00416 0.93331
F15 2003 1.86389 1.64457 −0.01154 0.92080
F15 2004 2.74263 1.56383 −0.01043 0.90945
F15 2005 2.51648 1.55181 −0.01034 0.88839
F15 2006 2.94339 1.38264 −0.00811 0.86845
F15 2007 3.99771 1.41246 −0.00897 0.82033
F16 2004 2.32112 1.37760 −0.00795 0.87267
F16 2005 2.90092 1.56247 −0.01079 0.87283
F16 2006 2.64689 1.25093 −0.00583 0.85792
F16 2007 2.83160 1.15147 −0.00477 0.84669
F16 2008 2.94479 1.17826 −0.00534 0.81480
F16 2009 2.36856 1.24705 −0.00609 0.84942
F18 2010 2.35041 0.94747 −0.00196 0.80366
F18 2011 1.63669 1.20682 −0.00557 0.85396
F18 2012 2.56954 1.07559 −0.00385 0.82972
F18 2013 2.25727 1.07572 −0.00365 0.85132
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4. Result

4.1. Overall economic impact

Fig. 4 demonstrates the change of NTL brightness (DN value) from
2004 to 2005 near the landfall location of Katrina, where a decline of
NTL brightness can be observed in New Orleans and the surrounding
coastal cities. The annual GDP estimates from the NTL data (see Fig. 5)
reveal that Hurricane Katrina has fundamentally altered the economic
growth in the declared disaster area. In contrast to the steady growth in
the Southeast Region (despite the slight drop in 2009 due to the fi-
nancial crisis), the GDP in the disaster area declined sharply in 2005
and grew at a slower rate in the following years. The Southeast Region
is delineated by Bureau of Economic Analysis, U.S. Department of
Commerce (2015) for releasing economic statistics (see Fig. 2). Ac-
cording to our estimation, the GDP in 2005 in the entire disaster area
declined 24.2 % compared with the business-as-usual condition if the

pre-Katrina growth trend persists. The accumulated loss of GDP from
2005 to 2013 (gray area in in Fig. 5) is about 2.2 billion current dollar
and the GDP is unlikely to restore to the business-as-usual trajectory in
the following years. Note, this loss is estimated only from the declined
GDP in the FEMA declared disaster area, which does not include other
indirect losses in a broader area. Note, due to the instability of the
DMSP-OLS images, the estimated GDP fluctuates from year to year.
Although the estimation of GDP in a specific year may not be accurate,
the general trend indicates the strong economic impact of the disaster.

4.2. Spatial variation of resilience

The GDP recovery trajectory varies in counties. As illustrated in
Fig. 6, the estimated GDP in Orleans Parish (blue) and St. Bernard
Parish (red) had a substantive decline in 2005 when Katrina stroke.
Both parishes are in the metropolitan area of New Orleans near the
landfall location of Katrina. The post-Katrina GDP in St. Bernard Parish
shows a faster recovery rate than Orleans Parish after Katrina. In con-
trast, St. Tammany Parish (green) in the north shore of Lake Pontch-
artrain had little economic impact and maintained a steady GDP growth
after Katrina, despite its proximity to the hurricane track.

As shown in Fig. 7 (a), Hurricane Katrina caused large instant dis-
turbance (D) in counties near the two landfall locations in Florida and
Louisiana. Note, the high D in southwest Louisiana (around Lake
Charles Parish) is possibly due to Hurricane Rita, a Category 3 hurri-
cane landed near the Louisiana-Texas border a month after Katrina.
Fig. 7 (b) shows that Louisiana counties have a higher recovery rate (Rr)
of GDP after Katrina, except Jefferson and Orleans Parish near the
center of New Orleans which were struggling to recover after Katrina.
High accumulated GDP loss (L) are distributed in coastal cities, in-
cluding Gulfport (MS), Mobile (AL), Panama City and Miami (FL). The
inland counties generally have lower accumulated loss.

Fig. 2. The track of Hurricane Katrina and counties that are presidentially declared as disaster area.

Fig. 3. Framework of GDP trajectory in Hurricane Katrina.
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4.3. Regression analysis

Various relationships were found between the three metrics (D, Rr,
L) and the selected variables (Table 3):

Instant disturbance (D) has the strongest relationship with the
percent of Asian people (highest R2) among the 20 selected variables.
The positive coefficient b indicates that counties with a higher ratio of
Asian people have endured greater GDP disturbance in Katrina. This
result confirms the findings in Vu, VanLandingham, Do, and Bankston
(2009) that 78 % of Vietnamese (the largest Asian group in Louisiana
and Mississippi) left their home during the hurricane and gradually
returns afterwards. D is also highly correlated with the physical impacts
and environmental conditions. Specifically, counties with high gust
speed, high accumulated rainfall, low elevation, high ratio of urban in
flood zone, or close to the coastline tend to have a high D. This reflects
the fact that New Orleans, which has low elevation and high ratio of
urban flood exposure, was seriously damaged by flood inundation due
to levee breech. Additionally, counties with a higher percentage of
agricultural industry have a lower D.

High recovery rates (Rr) are associated with high percentages of
energy industry (e.g. mining, quarrying, and oil and gas extraction),
implying that the energy industry rebounded more quickly after the
disturbance. Moreover, low elevation, proximity to coast, high ratios of
children and elderly people tend to impede the GDP recovery.

Accumulated economic loss (L) is negatively correlated (highest R2)
with the ratio of owner-occupied housing units, indicating communities
with more home-owner residents managed to prevent the overall eco-
nomic loss. Communities with a higher ratio of Asian, Hispanic and
Latino, children and elderly adults have suffered higher accumulated
loss. High L is also found in counties with a high urban exposure to
flood zone. Additionally, counties reliant on agricultural and mining
industries tend to have a lower long-term loss.

R2 of the multivariate regression indicates that the selected

variables can only explain 39.9 %, 29.3 % and 27.4 % variance of D, Rr,
and L respectively (Table 4), which implies that other variables should
be considered to model the recovery pattern. Due to the different
numbers of variables in the four categories, adjusted R2 was used to
compare the variance explained by the different categories. In general,
socio-economic variables can best predict (highest adjusted R2) instant
disturbance (D), followed by environmental condition and industrial
structure. Industrial structure is the best indicator of recovery rate (Rr),
followed by environmental and socio-economic variables. Socio-eco-
nomic variables can best predict the accumulated economic loss (L). It
is worth-noting that the disaster impacts explain the least variance in all
the three metrics, which implies that the intrinsic community capacities
(e.g. socio-economic conditions) are more decisive to economic re-
covery than the physical disaster impacts.

5. Discussion

Despite the extensive discussions in the literature, quantitative as-
sessment of community resilience is still a challenge due to the lack of
empirical data continuously collected in disasters. In the U.S, census
data are released decennially and county-level GDP data is only avail-
able in limited years, not to mention the developing world. Other data
collection methods such as field surveys and interviews are costly and
time-consuming. As an alternative, NTL remote sensing is an efficient
means to observe human activities (such as population, GDP, and en-
ergy consumption) from space. Most importantly, the NTL images have
the unique ability to detect declines of human activities, which is not
easy for other types of remote sensing imageries. The continuous scan
of NTL images can capture the disturbance and recovery pattern of
human activity during natural disasters at low cost and in a timely
manner. The introduced framework can increase our understanding
about community resilience and help to improve resilience prediction
models in terms of variable selection and weighting.

Table 2
Description of variables used in the regression analyses.

Category Variable Description Data source Preprocessing

Impact intensity Max gust Recorded maximum gust speed from Aug. 23–30, 2005 Knobb et al. (2005) Kriging interpolation, Zonal
operation

Rainfall Total rainfall from Aug. 23–30, 2005 National Weather Service Re-sampling, Zonal operation

Environmental Mean elevation Mean elevation U.S. Geological Survey Zonal operation
Distance to Coast Mean distance to coastline NOAA Euclidean distance, Zonal

operation
% of urban in flood
zone

Percent of developed land in flood zone FEMA flood map, National Land
Cover Database

Method in (Qiang, 2019)

Socio-economic % White Percent of population in one race: White U.S. decennial census (2000)
% Black Percent of population in one race: Black or African American U.S. decennial census (2000)
% Asian Percent of population in one race: Asian U.S. decennial census (2000)
% Hispanic & Latino Percent of Hispanic or Latino population U.S. decennial census (2000)
% children Percent of population under 18 years old U.S. decennial census (2000)
% elderly adult Percent of population above 65 years old U.S. decennial census (2000)
% owner occupied
homes

Percent of owner occupied housing unit U.S. decennial census (2000)

% bachelor degree Percent of population (> 25 years old) with 4 or more years
of college or bachelor's degree or higher

U.S. decennial census (2000)

% poverty Percent of population whose income is below poverty level U.S. decennial census (2000)
Per cap. income Per capita income U.S. decennial census (2000)

Industrial structure % small businesses Percent of establishments with < 20 employees County business patterns (2004)
% large businesses Percent of establishments with > 500 employees County business patterns (2004)
% Agriculture Percent of establishments in agriculture, forestry, fishing and

hunting
County business patterns (2004)

% Mining Percent of establishments in mining, quarrying, and oil and
gas extraction

County business patterns (2004)

% Manufacture Percent of establishments in manufacturing County business patterns (2004)
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In addition to Hurricane Katrina, the introduced assessment fra-
mework based on NTL data is applicable to other natural disasters (e.g.
tsunami and earthquake) that cause economic disturbance. The fra-
mework is particularly useful in situations where official socio-eco-
nomic data are not available at the desired spatio-temporal resolution.

Not limited to the DMSP/OLS images, the introduced framework can
use other data sources as input. For instance, the Visible Infrared
Imaging Radiometer Suite (VIIRS) images, the new generation NTL
remote sensing products since 2011, provide many new features (e.g.
higher spatial and radiometric resolution) that are useful for measuring

Fig. 4. Changes of NTL brightness (DN value) in the 2004 and 2005 DMSP-OLS annual composite images.

Fig. 5. Annual estimated GDP in current dollars in the affected area (refer to the left axis) and the Southeast Region (refer to the right axis) (Data source: Bureau of
Economic Analysis).
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community resilience in disasters with a smaller impact area and
shorter period.

As demonstrated in this study, the GDP time series estimated from
the NTL data can capture the various recovery trajectories at the county
level. The analysis results uncover the strong economic impact of
Katrina in the affected region, where the GDP has given up its rapid
growth and shifted to a different trajectory after 2005. This finding
confirms the tremendous and long-lasting impact of Katrina on popu-
lation migration (2010, Fussell, Curtis, & DeWaard, 2014), declined
urban growth (Qiang & Lam, 2016) and economic activity (Baade,
Baumann, & Matheson, 2007; Petterson, Stanley, Glazier, & Philipp,
2006). According to the recent estimates of the U.S. Census (2019),
until 2017 the population and housing price in New Orleans has not yet
recovered to the pre-Katrina level. The various GDP recovery patterns
reveal geographical disparities of community resilience related to the
local environmental and socio-economic conditions.

The recovery pattern of a social system is dependent on both in-
tensity of disaster impacts and resilience of the system. The analysis
results (see Table 4) suggest that the physical impact variables (in-
cluding max gust speed and accumulated rainfall) can only explain
limited variance (R2 = 0.065) in the recovery pattern. Instead, the
inherent conditions of communities (including environmental, socio-
economic and industrial conditions) play a central role in shaping the
recovery pattern. The univariate regression with individual variables
provides empirical evidence about the underlying factors that influence
the recovery. The results may also inform specific plans to prompt re-
silience at different phases of a disaster. For instance, the strong cor-
relation between instant disturbance (D) and the environmental con-
ditions (e.g. elevation, proximity to coast and % of urban area in flood
zone) suggests that reducing exposure is the most effective way to re-
duce the direct impact caused by disasters. In the recovery phase,

communities with some demographic and socio-economic character-
istics may have difficulties to bounce back, pinpointing areas where
special assistance or policy levers should be applied. Compared with the
traditional resilience indices without specific outputs, these analysis
results can provide more actionable information to support decision-
making at different phases of a disaster.

Despite the merits demonstrated in this study, the introduced ap-
proach can be improved in the following aspects. First, despite the good
model fit at the county level, the DMSP-OLS images cannot perfectly
predict economic activity due to their inherent limitations (e.g. low
spatial resolution, lack of onboard and inter-satellite calibration, and
limited dynamic range). In future studies, the assessment results need to
be validated against additional datasets such as other NTL products
(e.g. VIIRS images) or socio-economic data continuously collected
during the disaster. Second, other factors that influence economic re-
covery should be taken into account in future studies. For instance,
economic cycles (e.g. great recessions) can slow down business re-
covery after a disaster. In the introduced approach, linear models were
used to generalize the economic growth in the pre- and post-Katrina
periods, where the yearly fluctuations (e.g. the financial crisis in 2009)
are averaged in the trend lines. Ideally, the “business-as-usual” trajec-
tories should be projected with more sophisticated models to eliminate
the effect of economic cycles. Third, the 20 selected variables can only
explain ∼40 % variation of the measured metrics, which reveal the
complexity of community resilience. The prediction power of the model
can be improved by including more variables and using more sophis-
ticated model specifications (e.g. non-linear models). Robust models for
community resilience prediction can be developed by accumulating
empirical evidence in more disaster events.

Fig. 6. Estimated GDP time series of Orleans Parish (blue), St. Bernard Parish (red) and St. Tammany Parish (green).

Fig. 7. Spatial variation of (a) instant disturbance (D), (b) recovering rate (Rr) and (c) accumulated GDP loss (L). Red indicates high instant disturbance (D), slower
recovery (Rr) and high accumulated loss (L).
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6. Conclusion

This study introduces a quantitative framework for resilience as-
sessment using DMSP-OLS Nighttime Lights images. The framework
was applied to model the recovery patterns of economic activity in the
affected area in Hurricane Katrina 2005. The analyses show the great
economic disturbance caused by Katrina and the slow recovery in the
entire affected area. The county-level analyses indicate strong spatial
variation of the recovery pattern. Statistical analyses were carried out
to explore the underlying factors that influence the recovery patterns.
This study demonstrates the utility of NTL images in monitoring human
dynamics in natural disasters, which filled the critical gap of empirical
data and assessment methods for resilience research. Based on the
framework of recovery trajectory, resilience is modelled as a dynamic
process. Compared with the traditional resilience indices, the modeling
results can provide more specific and actionable measures to promot
resilience in diverse communities and in different phases of a disaster.
This study re-visits Hurricane Katrina using DMSP-OLS NTL images.
However, the assessment approach is applicable for other disaster
events using other NTL products (e.g. VIIRS DNB images). The results
increase our understanding about the complexity of community resi-
lience and provide support for decision-makers to develop resilient and
sustainable communities.
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Table 3
Univariate regression analysis of instant disturbance (D), recovery (Rr) and economic loss (L) with environmental and socio-economic variables. Bold font indicates
statistical significance (p< 0.01). Detailed statistics of the regression analysis (e.g. confidence intervals, standard errors of residuals, and residual distributions) can
be found in the supplementary material.

Variable category Variable Instant disturbance (D) Recovery rate (Rr) Economic loss (L)

b p value R2 b p value R2 b p value R2

Impact intensity Max gust 0.272 0.000 0.074 0.000 0.995 0.000 0.046 0.545 0.002
Rainfall 0.257 0.001 0.066 −0.064 0.393 0.004 0.053 0.477 0.003

Environment Mean elevation −0.375 0.000 0.140 −0.336 0.000 0.113 −0.113 0.132 0.013
Distance to Coast −0.358 0.000 0.128 −0.252 0.001 0.063 −0.081 0.279 0.007
% of urban in flood zone 0.346 0.000 0.146 0.117 0.122 0.015 0.239 0.003 0.056

Socio-economic % White 0.026 0.733 0.001 −0.057 0.447 0.003 0.013 0.867 0.000
% Black −0.060 0.425 0.004 0.068 0.369 0.005 −0.041 0.583 0.002
% Asian 0.420 0.000 0.176 −0.083 0.271 0.007 0.333 0.000 0.111
% Hispanic & Latino 0.299 0.000 0.089 −0.139 0.064 0.019 0.213 0.004 0.045
% children 0.086 0.250 0.007 −0.257 0.001 0.066 0.255 0.001 0.065
% elderly adult 0.083 0.267 0.007 −0.267 0.000 0.071 0.248 0.001 0.061
% owner occupied homes −0.274 0.000 0.075 0.126 0.092 0.016 −0.338 0.000 0.114
% bachelor degree 0.161 0.031 0.026 −0.102 0.172 0.011 0.203 0.006 0.041
% poverty −0.136 0.068 0.019 0.110 0.141 0.012 −0.129 0.086 0.017
Per cap. income 0.243 0.001 0.059 −0.140 0.061 0.020 0.243 0.001 0.059

Industrial structure % small businesses −0.184 0.014 0.034 −0.116 0.123 0.013 −0.085 0.259 0.007
% large businesses 0.090 0.231 0.008 −0.110 0.143 0.012 0.142 0.057 0.020
% Agriculture −0.321 0.000 0.103 −0.116 0.121 0.014 −0.243 0.001 0.059
% Mining 0.084 0.263 0.007 0.404 0.000 0.163 −0.214 0.004 0.046
% Manufacture −0.154 0.040 0.024 −0.077 0.303 0.006 −0.088 0.243 0.008

Table 4
Adjusted R2 of the multivariate regressions between the resilience metrics (D, Rr, and L) and variables in different categories.

Variable category Instant disturbance (D) Recovery rate (Rr) Economic loss (L)

R2 Adj. R2 R2 Adj. R2 R2 Adj. R2

All variables 0.399 0.327 0.369 0.293 0.274 0.187
Impact intensity 0.076 0.065 0.016 0.004 0.003 −0.008
Environmental 0.188 0.172 0.089 0.071 0.056 0.038
Socio-economic 0.286 0.243 0.099 0.045 0.246 0.201
Industrial structure 0.138 0.114 0.194 0.170 0.114 0.088
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